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SUMMARY 

The finite element method is used to analyse convective heat transfer in a porous medium. Convection past a 
vertical surface embedded in the medium and convection in a confined porous medium enclosure are 
analysed using the above method. The results are compared with those available in the literature and the 
agreement is found to be good. The method is applicable for two-dimensional analysis in a porous body of 
any arbitrary shape. The restriction of the boundary layer assumption is relaxed. 
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1. INTRODUCTION 

Convective heat transfer in a fluid-saturated porous medium occurs in many geophysical and 
engineering systems. The study of such heat transfer has important applications in fields like 
petroleum engineering, geothermal systems, nuclear engineering and insulation technology. The 
subject has hence received much attention in the past two decades. 

In a review article, Cheng' lists the various cases of heat transfer by free and mixed convection 
from flat plates into a porous medium. The study of heat transfer in porous medium enclosures of 
various shapes has also received much attention.' - 6  

An analysis for steady free convection about a vertical flat plate embedded in a porous medium 
with wall temperature varying as a power function of distance from the origin was first made by 
Cheng and Minkowicz.' Later, Johnson and Cheng' made a systematic analysis considering 
the possibility of similarity solutions for various wall temperature functions. It was found in 
Reference 8 that similarity solutions can be obtained for wall temperature varying as a power 
function or an exponential function. Both the above analyses suffer from the disadvantage that 
each type of temperature function has to be solved separately. Solutions have been obtained for 
the mixed convection problem with wall temperature as an arbitrary function of distance in the 
form of perturbations to the isothermal case.9 The present method using finite elements allows 
arbitrary variation of temperature along the wall. Also, no boundary layer approximations need 
be made as was done in the earlier cases. The method can easily be extended to study other 
configurations of porous media. Here we analyse the case of a porous medium rectangular 
enclosure with the vertical walls at different temperatures and the case of a heated vertical plate in 
a porous medium. 
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2. ANALYSIS 

Consider the problem of free convection in a saturated porous medium adjacent to a non- 
isothermal vertical impermeable surface. The physical situation is shown in Figure 1 (a), where x 
and y are Cartesian co-ordinates in the horizontal and vertical directions respectively, with the 
positive x-axis pointing towards the porous medium. The origin of the co-ordinate system is 
chosen at that point of the impermeable surface where the wall temperature begins to deviate from 
that of the surrounding fluid. The wall temperature is assumed to vary along y from the origin 
arbitrarily with T, > T,. 

( a )  Vert ical  non- isothermal  surface embeded 
in the porous m e d i u m  
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( b )  Rectangular porous medium enclosure 

Figure 1 .  Physical model and co-ordinate system 
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We assume that: 

(i) The convective fluid and the porous medium are everywhere in local thermodynamic 
equilibrium. 

(ii) There is no phase change of the fluid in the medium. 
(iii) The properties of the fluid and of the porous medium are homogeneous and isotropic. 
(iv) The Boussinesq approximation can be applied. 

Under these assumptions the governing equations are given by 

where u and u are Darcy’s velocities in the x- and y-direction respectively; p, p and p are the 
density, viscosity and thermal expansion coefficient respectively of the fluid; K is the permeability 
of the porous medium; LY = k , / (p , c ) ,  is the equivalent thermal diffusivity, with ( p , ~ ) ,  denoting 
the product of density and specific heat of the convecting fluid, and k ,  the thermal conductivity of 
the saturated porous medium given by k ,  = (1 - & ) k S  + E k,, where E is the porosity of the medium 
and k, and k ,  are the thermal conductivities of the solid and convective fluid respectively; T, P and 
g are temperature, pressure and gravitational acceleration respectively. The subscript ‘co’ refers to 
conditions far away from the heated surface. The boundary conditions for the problem are 

at x=O: u=O, T=T,,,(y); (6) 

as x-00: 0-0, T=T,. (7) 

The continuity equation (1) can be satisfied automatically by introducing the streamfunction $ as 

(8) 

Eliminating P from equations (2)  and (3) by cross-differentiating and by making use of (5 ) ,  the 
resulting equation in terms of $ is 

a* a* 
aY ’ ax 

v =  --. u=- 

In terms of $, the energy equation (4) can be written as 

Equations (9) and (10) constitute the governing equations for free convection in a porous medium. 
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The finite element method is used to solve these equations. Each equation has both the variables 

The simplex three-noded triangular element is used for the analysis. The variations of T and $ 
$ and T-we thus have two coupled equations which have to be solved simultaneously. 

inside the element are given by 

where N,, N2, N3 are the shape functions6 given by 

ai + bix + ciy 
N .  = , i =  1, 2, 3 .  

2 A  

We use the popular Galerkin method for the element formulation. For equation (10) this becomes 

The integral when evaluated gives an equation of the form 

c Kl  I { T> = { F ,  I. (15) 

[Kl]  itself is a function of $. Thus the equation contains both $ and T. For the three-noded 
triangular element, 

bl b2 bl  b3 c l c 2  c1c3 

+L[[ 4 A  :!b2 b: b2b3]+[ :!c2 c: zic3]/ .  (16) 
bl b3 b2 b3 b: c1c3 c2c3 

F, is zero in the present case (since there are no convection or heat flux boundary conditions). 
Similarly, applying Galerkin's criterion to equation (9), we have 

This yields the equation 
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where 

[ b: b 1 b 2  b 1 b 3 ]  1 [ c: z i c 2  ' 1 c 3 ]  

(20) 
1 

[ K 2 ] = -  bib2 b: b2b3 +- C ~ C Z  c 2 c 3  . 4 A  4 A  
b l  b3 b2 b3  b: c 1 c 3  c 2 c 3  c 3  

It is to be noted that the stiffness matrix [ K l ]  is asymmetric. 
The element matrices given by (15) are assembled to get the global matrix equation, which is 

solved for { T }  by the Gaussian elimination technique. Initially, the value of { I,$} is taken to be zero 
for the first iteration. The values of { T }  obtained are then used to solve the global matrix equation 
obtained by assembly of the matrices given by (18) for { I,$}. These {$}-values are now used for the 
next iteration in the calculation of { T } .  The two equations are thus solved simultaneously by 
iteration. For the solutions to converge it is necessary that the mesh be fine. The values of {I,$} at 
the wall are forced to be zero (since u = 0 at x = 0). The temperatures at the wall nodes are also 
incorporated. 

3. RESULTS AND DISCUSSION 

Vertical heated plate embedded in a porous medium 

For purposes of comparison we have taken up the case of free convection about a dike.' When 
the hot intruded magma is in contact with the cooler subsurface environment, its outer surface will 
be chilled to form a thin glass selvage. The interior of the intrusive will continue to solidify when 
heat is transferred from the intrusive (dike) to the surroundings. When hot intrusive is trapped in 
an aquifer, however, its cooling rate is governed by heat convection. Thus it has been speculated 
that hot dike complexes in a volcanic region can provide an energy source for heating of the 
ground-water.' The surface temperature of the dike is assumed to be 200°C. The length of the dike 
is assumed to be 300 m and the dike is intruded in an aquifer at 15°C. The physical properties 
used7 for the computations are f l=  1.8 x 10-40C-' m- ' ,  pm = lo6 gm-3 ,  c =  1 calg-'OC-l, 
p=027 gs- lm- ' ,  k,=0.58 cal s-'OC-' m-'  and K =  lo-'' mz. The values of f l , pmr c and p 
are the data for ground-water evaluated at the mean film temperature. 

A region of area 300 m by 140 m adjacent to the dike has been discretized and a finite element 
mesh of 256 nodes and 450 elements used. The finite element formulation described is utilized to 
obtain the temperature and streamfunction values at the nodes by the procedure outlined earlier. 
This output is plotted in the form of isotherms in the region (Figure 2). 

The figure shows the boundary layer thickness increasing from zero at the origin to 82 m at a 
height of 300 m. Cheng and Minkowicz get the corresponding boundary layer thickness at this 
height as 80 m.' 

Although the present model takes into account the conductive heat transfer in the vertical 
direction and makes no boundary layer approximations, the heat transfer results vary very little 
from those of Reference 7. This only confirms that it is quite permissible to make boundary layer 
approximations for such problems. 
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x -  

Figure 2. Isotherms for a dike with uniform wall temperatures 

From the temperature distribution obtained, the standard dimensionless variables N u  and Ra 
were calculated. In the porous medium these are defined as 

R a y = p , y B K ( T w -  T m ) Y / W ,  

where h is the local heat transfer coefficient and q, is the local heat transfer rate given by 

For the dike we have considered, a total heat transfer rate of 8.1 x lo6 calh-’m-2 and an 
average heat transfer coefficient of 148.5 cal h-’ m - 2  “C-’ are obtained. The corresponding 
values obtained by Cheng and Minkowicz are 8.3 x lo6 cal h-’m-’ and 150 calhp1m-20C-1.7 

Next, a temperature distribution as a power function of distance along the wall given by 

- k ,  ariax. 

is assumed. Solutions have been obtained for different values of A (-0.33, -0.25,0,0.25,0-5,0.75 
and 1) and the corresponding values of Nu and R a  are calculated in each case. 

A plot of NU,,/RU:’~ against A is shown in Figure 3. These values are obtained at the location 
y =  300 m. The similarity solution of Cheng and Minkowicz yields a constant value of N U / R U ” ~  
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Figure 3. Comparison of heat transfer results 
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Figure 4. Variation of Nu,/Ra;/’  along the wall 
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for each A. However, the present model gives a variation as shown in Figure4. Nu,/Ra:I2 
decreases with an increase in y and becomes constant at sufficiently large y. The decrease is largest 
in the case of A = - 0.33 and reduces with an increase in A. For A = 1 the value is almost constant 
and coincides with the value given by Cheng and Minkowicz. 
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The plot of Figure 3 is almost identical to that obtained by Cheng and Minkowicz. A tabular 
comparison of the values is shown in Table I. 

Porous medium enclosure 

Next we use the method to analyse natural convection in a confined porous medium with the 
vertical walls at different temperatures. The system of interest is shown in Figure 1 (b). A two- 
dimensional rectangular space of height H and horizontal dimension L is filled with a fluid- 
saturated porous matrix of permeability K .  The same finite element model developed earlier is 
used here with the incorporation of appropriate boundary conditions. The top and bottom walls 
are insulated. The left-hand wall is taken to be warm at a temperature AT/2, while the wall on the 
right is cold and held at  - AT/2. Since the region is an enclosure, $ is to be specified as zero on all 
four boundaries. 

Solution of the finite element equations gives the temperature distribution in the enclosure. N u  
and Ra are calculated as before and a plot of N u  versus Ra(H/L)  is shown in Figure 5. 

Table I 

1 

-0.33 
- 0.25 

0 
0.25 
0.33 
0.5 
0.75 
1 

Similarity solution of 
Cheng and Minkowicz' 

0 
0.1621 
0.444 
0.6303 
0.6788 
0.761 5 
0.8926 
1.001 

FEM solution 

00832 
0.1919 
0.4173 
06026 
0-6569 
07536 
0881 1 
0.99 16 
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Figure 5. Comparison with experimental and other theoretical results for Nu 
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Two cases, with L/H=0.444 and 0222, are considered. The plot also gives experimental and 
other theoretical results for the two  case^.'-^.^^ It is seen that the agreement with the 
experimental results is good. The values are, however, slightly lower than the boundary layer 
regime values, and this is only to be expected since the present model relaxes the assumptions of 
boundary layer analysis. It can be observed from Figure 5 that the Nusselt number increases with 
the Rayleigh number for a given height and width of the porous enclosure, as expected. The nature 
of the variation is of the power-law type since the variation is linear on log-log scale. For a given 
Rayleigh number, the Nusselt number increases as the width of the enclosure increases for a given 
height or as the height increases for a given width. 

Figure 5 also gives values of N u  in the ranges R a ( H / L )  > 3000 and Ra( H / L )  < 200- ranges for 
which results are not available in the literature. 

4. CONCLUDING REMARKS 

A finite element method has been developed to analyse free convection heat transfer in a porous 
medium. The method can be used for two-dimensional analysis of a porous body of arbitrary 
shape. The restriction of the boundary layer approximation is relaxed. The two cases of 
convection past a vertical surface embedded in the medium and convection in an enclosure are 
considered. The results are found to be in good agreement with those available in the literature. 
Results for ranges of Ra(H/L)  far beyond what is presently available in the literature have been 
obtained for the porous enclosure. 

APPENDIX: NOMENCLATURE 

velocities in the x- and y-directions 
streamfunction 
temperature 
density 
viscosity 
thermal expansion coefficient 
thermal diffusivity 
porosity of the medium 
permeability of the porous medium 
thermal conductivity of the saturated medium 
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